jueves, 30 de marzo de 2017

Hola mundo para Visual Studio 2017

Nunca es tarde si la dicha es buena.

Microsoft ya tiene libre desde hace semanas su producto de desarrollo de software como Visual Studio 2017 Community para hacer tus aplicaciones.

Descarga

En este Blog se utiliza mucho este IDE para hacer pequeños programas de control sobre el puerto serie y placas de Arduino e incluso los microcontroladores PIC.

Tutorial básico Hola Mundo en Visual C#.

Introducimos al formulario un Button y un label.


Haz docble clic en el botón Hola, luego introduces este código.

label1.Text = "Hola mundo";


Pulsas F5 para compilar y muestra el formulario, luego pulsas el botón Hola.


Código fuente C#:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace HolaMundo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        private void button1_Click(object sender, EventArgs e)
        {
            label1.Text = "Hola mundo";
        }
    }
}

Nota de la versión Visual Studio 2017:

https://www.visualstudio.com/es-es/news/releasenotes/vs2017-relnotes

A disfrutarlo. ;)

Intel comercializa sus primeras memorias Optane para consumo

Intel está comercializando sus primeras memorias Optane para el mercado de consumo. Una solución de caché con potencial para mejorar el rendimiento de cualquier dispositivo, aplicación o servicio que se beneficie de un rápido acceso a grandes conjuntos de datos.
Como sabes, Intel Optane es un conjunto de soluciones de estado sólido con memorias 3D X Point, la primera categoría de memoria no-volátil desde el lanzamiento de flash NAND en 1989. 3D XPoint ha sido desarrollada desde cero por Intel y Micron, combinando las ventajas de rendimiento, densidad, energía, no volatilidad y coste de todas las tecnologías de memoria disponibles en el mercado.
Así, después del lanzamiento de la Intel® Optane™ SSD P4800X para centros de datos, el gigante del chip estrena sus memorias Optane en el mercado de consumo. Intel las llama “memorias” aunque en realidad son módulos que se sitúan a medio camino entre la unidad de almacenamiento y la memoria DRAM del sistema, actuando como una unidad rápida de caché.
Las memorias Optane utilizan un factor de forma M.2 y una interfaz PCIe NVMe 3.0 x2 para ofrecer un gran rendimiento, con velocidades de transferencia de datos de hasta 1350 / 290 Mbytes por segundo en lectura/escritura secuencial. En la práctica, las memorias Optane pretenden acelerar el rendimiento del equipo de manera asequible. Según Intel, si instalamos este tipo de memorias en nuestro PC obtendremos:
  • Reducir a la mitad el tiempo de arranque del PC
  • Aumentar el rendimiento del almacenamiento hasta 14 veces
  • Aumentar el rendimiento general un 28%
  • Inicio de aplicaciones más rápido (por ejemplo, Outlook puede cargar hasta 6 veces más rápido)
  • La búsqueda de archivos es cuatro veces más rápida
Intel® Optane™

Memorias Optane – disponibilidad y precio

Este tipo de memorias tienen un nicho limitado ya que solo funcionan con procesadores Intel “Kaby Lake”, sistema operativo Windows 10 de 64 bits. el mencionado slot M.2 2280 y una BIOS que soporte la tecnología Intel Rapid Storage 15.5. Recalcar que funcionan como caché, no pueden utilizarse para instalar en ellas el sistema operativo.
Estarán disponibles a partir del 24 de abril en módulos de 16 GB por 44 dólares y 32 GB con un coste de 77 dólares. El precio es económico y puede ser adecuado para acelerar el rendimiento de un PC de sobremesa con disco duro, aprovechando las ventajas de capacidad de éste y el rendimiento de una unidad de estado sólido. Suponemos que Intel utilizará esta tecnología para comercializar otras soluciones de estado sólido. Sí está confirmado que se comercializarán soluciones similares para portátiles.

Fuente:
http://www.muycomputer.com/2017/03/29/memorias-optane/

Intel confirma que no todos los chips de 10 nm son iguales


Los procesos de fabricación y la reducción de los mismos juegan un papel muy importante en el sector tecnológico. Ya os hablamos de ello en este artículo y hoy Intel ha destacado algo muy importante en este sentido, que no todos los chips de 10 nm son iguales.
La idea clave es sencilla de entender. Cuando avanzamos en el proceso de fabricación y lo reducimos no es lo mismo hacerlo doblando el número de transistores que elevar ligeramente el conteo de los mismos frente al proceso anterior.
En la gráfica que acompañamos podemos ver perfectamente reflejada esta idea. Si reduces el proceso de fabricación pero sólo aumentas ligeramente el conteo de transistores o incluso lo disminuyes el avance que estás consiguiendo pierde mucho potencial.
Por otro lado debemos tener en cuenta que reducir el proceso de fabricación doblando la densidad de transistores es mucho más complicado, y que por tanto requiere un mayor esfuerzo y una inversión muy grande.
chips de 10 nm (2)
Con eso en mente podemos entender mejor porqué Intel ha seguido aprovechando el proceso de fabricación de 14 nm. Es evidente que el gigante del chip podría haber llevado a cabo una transición a los 10 nm hace tiempo, pero la misma no habría sido auténtica, al menos desde el punto de vista que hemos expresado en este artículo.
Esto quiere decir que chips como el Exynos 8895 y el Snapdragon 835 no han cumplido esa regla de doblar la densidad de transistores al saltar a los 10 nm. La consecuencia directa de esto es que aunque se beneficiarán de las ventajas que ofrece una reducción de proceso no llegarán al mismo nivel que lo habría hecho un chip que hubiera doblado el conteo de transistores.
La mejora que conseguirán esos chips en relación aumento de rendimiento-reducción de consumo será menor, y por tanto no serán comparables a soluciones que de verdad hayan dado el salto siguiendo esa premisa, fijada como sabemos en la Ley de Moore.
Por su parte Intel ha confirmado que sus chips de 10 nm multiplicarán por 2,7 el conteo total de transistores frente al proceso de 14 nm, lo que se traducirá en un aumento del rendimiento de hasta un 25% y una reducción de consumo de hasta un 45%.

Fuente:
http://www.muycomputer.com/2017/03/29/intel-10-nm/

domingo, 26 de marzo de 2017

Consiguen crear hidrógeno metálico

Casi un siglo después de que fuera postulado teóricamente, unos científicos han conseguido crear uno de los materiales más raros y quizá más valiosos del planeta.

El material, hidrógeno atómico metálico, ha sido creado por el equipo de Isaac Silvera y Ranga Dias, de la Universidad Harvard en Cambridge, Massachusetts, Estados Unidos.

Además de ayudar a los científicos a responder preguntas fundamentales sobre la naturaleza de la materia, se cree que el material tendrá una amplia gama de aplicaciones, incluyendo la de superconductor a temperatura ambiente.

“Se trata del santo grial de la física de alta presión”, valora Silvera. “Es la primera muestra de la historia de hidrógeno metálico en la Tierra, así que cuando la miras, estás viendo algo que nunca ha existido antes”.

Para crearla, Silvera y Dias comprimieron una diminuta muestra de hidrógeno bajo una presión de 495 gigapascales, mayor que la del centro de la Tierra. A esas presiones extremas, el hidrógeno molecular sólido se descompone, y las moléculas firmemente ligadas entre sí se disocian para transformarse en hidrógeno atómico, que bajo tales condiciones se comporta como un metal.

Si bien el trabajo abre una puerta hacia un mejor conocimiento de las propiedades generales del hidrógeno, también ofrece pistas atractivas sobre nuevos materiales potencialmente revolucionarios.

[Img #41607]

Imágenes microscópicas de las etapas en la creación de hidrógeno metálico: hidrógeno molecular transparente (izquierda) a unos 200 gigapascales, que es convertido en hidrógeno molecular negro, y finalmente en hidrógeno atómico metálico reflectante a 495 gigapascales. (Fotos: cortesía de Isaac Silvera)

Una predicción muy importante es que el hidrógeno metálico debería ser metaestable. Eso significa que si se le devuelve a la presión ambiental normal de la superficie terrestre, seguirá siendo metálico, de manera similar a la forma en que los diamantes se forman a partir del grafito bajo un calor y una presión intensos, pero siguen siendo diamantes cuando la presión y la temperatura descienden hasta los valores normales en la superficie terrestre.

Averiguar si el material es realmente estable es importante porque se cree que el hidrógeno metálico podría actuar como superconductor a temperatura ambiente. Eso sería revolucionario. Se pierde mucha energía eléctrica debido a la disipación durante la transmisión, así que si pudiéramos fabricar cables de este material, sin la problemática asociada a los superconductores que requieren bajas temperaturas, y utilizarlo en la red eléctrica, ello marcaría un antes y un después en la historia del uso humano de la electricidad.

Un superconductor a temperatura ambiente también podría cambiar radicalmente nuestro sistema de transporte, haciendo mucho más fácil y práctica la levitación magnética de trenes de alta velocidad, así como haciendo más eficientes los coches eléctricos y mejorando el rendimiento de muchos dispositivos electrónicos.

Fuiente:
http://noticiasdelaciencia.com/not/22903/consiguen-crear-hidrogeno-metalico/

Zoología Lunes, 6 marzo 2017 Bioingeniería Logran grabar en ADN y sin errores una película y un sistema operativo de ordenador

La humanidad podría pronto generar más datos de lo que los discos duros u otros sistemas de almacenamiento masivo puedan acoger de manera eficaz, un problema que ha hecho que los científicos presten atención al ADN, la antiquísima solución de la naturaleza para almacenar información.

En un nuevo estudio, Yaniv Erlich y Dina Zielinski, de la Universidad de Columbia en la ciudad estadounidense de Nueva York, han demostrado que un algoritmo diseñado originalmente para streaming de video en un teléfono móvil o celular puede aprovechar casi por completo el potencial de almacenamiento del ADN gracias a poder comprimir mucho más la información en él que en cualquier otro sistema artificial existente de almacenamiento de información. También han demostrado que esta tecnología es muy fiable.

El ADN constituye un medio de almacenamiento ideal porque es ultracompacto y puede durar cientos de miles de años si se le mantiene en un lugar fresco y seco, como se demostró entre 2013 y 2016 con la obtención de ADN de huesos de un antepasado humano de hace 430.000 años, encontrados en una cueva española.

“El ADN no se degradará con el tiempo como sí les ocurrirá a las cintas de casete y a los CDs. No se volverá obsoleto, y si fuera así, los humanos tendríamos problemas mayores”, dice agudamente Erlich.

Erlich y Zielinski eligieron seis archivos para codificar, o escribir, en el ADN: un sistema operativo completo de ordenador, una película francesa de 1895 (“Llegada de un tren a La Ciotat”), una tarjeta de regalo de 50 dólares de Amazon, un virus de ordenador, el contenido de una placa diseñada como mensaje para extraterrestres y que viaja a bordo de las sondas espaciales Pioneer, y un estudio de 1948 del teórico de la información Claude Shannon.

[Img #42213]

Yaniv Erlich y Dina Zielinski. (Foto: New York Genome Center)

Erlich y Zielinski comprimieron los archivos en uno solo, y después dividieron los datos en secuencias cortas de código binario hecho de ceros y unos. Usando un algoritmo de corrección y borrado, empaquetaron aleatoriamente las secuencias en conjuntos denominados gotas, cartografiando los unos y los ceros de cada gota para las cuatro bases de nucleótidos en el ADN: A, G, C y T. El algoritmo excluyó combinaciones de letras conocidas por crear errores, y añadió un código de barras a cada gota para ayudar a reensamblar los archivos más tarde.

En total, generaron una lista digital de 72.000 cadenas de ADN, cada una de 200 bases de largo, y la enviaron en un archivo de texto a la compañía Twist Bioscience, de San Francisco, especializada en síntesis de ADN y en convertir datos digitales en datos biológicos. Dos semanas más tarde, recibieron un frasco conteniendo una pizca de moléculas de ADN.

Para recuperar del ADN sus archivos, utilizaron tecnología moderna de secuenciación que lee las cadenas de ADN, lo que fue seguido por el uso de un software que traduce el código genético de nuevo a código binario. Así, recuperaron sus archivos sin ningún error en absoluto.

También han demostrado que se podría crear una cantidad virtualmente ilimitada de copias con su técnica de codificación, mediante la multiplicación de su muestra de ADN a través de la reacción en cadena de la polimerasa (PCR), y que esas copias, e incluso las copias de sus copias, y así sucesivamente, pueden seguir almacenando, sin errores, la información original.

Finalmente, los investigadores han demostrado que su estrategia de codificación empaqueta 215 petabytes de datos en un único gramo de ADN, 100 veces más que lo conseguido con los métodos publicados por los investigadores precursores del almacenamiento de datos en ADN, George Church de la Universidad Harvard, y Nick Goldman y Ewan Birney del Instituto de Bioinformática Europeo. “Creemos que es el sistema de almacenamiento de datos de densidad más alta creado hasta ahora”, subraya Erlich.

Fuente:
http://noticiasdelaciencia.com/not/23304/logran-grabar-en-adn-y-sin-errores-una-pelicula-y-un-sistema-operativo-de-ordenador/

Tejido cardiaco humano creciendo en hojas de espinaca

Unos investigadores han recurrido al sistema vascular de las plantas para resolver un importante problema de bioingeniería que está bloqueando la regeneración de tejidos y órganos humanos.

Los científicos del sector se enfrentan a un desafío fundamental mientras buscan ampliar la escala de la regeneración de tejidos desde pequeñas muestras de laboratorio a tejidos más extensos, incluyendo piezas óseas e incluso órganos completos, para implantarlos en personas y tratar enfermedades o lesiones graves: cómo establecer un sistema vascular que suministre sangre al interior del tejido en desarrollo.

Las actuales técnicas de bioingeniería, incluyendo la impresión 3D, no pueden fabricar la red ramificada de vasos sanguíneos hasta el nivel capilar que se requiere para proporcionar el oxígeno, los nutrientes y las sustancias esenciales que se precisan para un adecuado crecimiento de los tejidos. A fin de solventar este problema, un equipo de investigación multidisciplinar del Instituto Politécnico de Worcester, la Universidad de Wisconsin-Madison y la Universidad Estatal de Arkansas en Jonesboro, todas estas instituciones en Estados Unidos, ha decidido recurrir a las plantas. Estos investigadores han explorado la posibilidad de usar plantas descelularizadas como andamios, con capacidad de perfusión, para ingeniería de tejidos.

Las plantas y los animales explotan métodos fundamentalmente diferentes para transportar fluidos, sustancias y macromoléculas, pero existen similitudes sorprendentes en sus estructuras de red vascular. El desarrollo de plantas descelularizadas para servir como andamio abre otro capítulo en una nueva rama de la ciencia que investiga el mimetismo entre lo vegetal y lo animal.

[Img #42628]

En esta secuencia, una hoja de espinaca es desprovista de sus células vegetales, un proceso llamado descelularización. El proceso solo deja la vasculatura de la hoja. (Fotos: Worcester Polytechnic Institute)

En una serie de experimentos, el equipo de Glenn Gaudette cultivó células cardiacas humanas que podían latir sobre hojas de espinaca a las cuales se despojó de células vegetales. Hicieron fluir fluidos y microesferas parecidas en tamaño a los glóbulos sanguíneos humanos a través de la vasculatura de la espinaca, y sembraron con éxito las venas de esta última con las células humanas que recubren los vasos sanguíneos. Los investigadores pudieron así cultivar células cardíacas que latían sobre tales hojas descelularizadas.

Esto abre la puerta hacia el uso de múltiples hojas de espinaca para hacer crecer capas de músculo cardiaco sano que permitan dar tratamientos médicos avanzados a pacientes que han sufrido ataques al corazón.

 Fuente:
 http://noticiasdelaciencia.com/not/23595/tejido-cardiaco-humano-creciendo-en-hojas-de-espinaca/

sábado, 25 de marzo de 2017

Hola mundo del nuevo Delphi 10.2 Tokio

Hola:

Aquí se presenta la nueva versión de Delphi 10.2 Tokio.

Novedades:
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/What's_New

Han corregidos 500 reportes por los clientes.
http://edn.embarcadero.com/article/44747

Puedes descargar la versión grauita Delphi Edition Starter.

Descargar

Aquí hice una prueba muy básica sobre Delphi 10.2 Tokio con dos botones, uno para saludar y el otro para despedirse en una etiqueta.



Introduces un label y dos button.

Haz doble clic en el botón del formulario y pon este código:

Label1.Caption := 'Hola mundo.';

Este otro para la despedida:

Label1.Caption := 'Adiós mundo.';

Código fuente completo:

unit Saludar;

interface

uses
  Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System.Classes, Vcl.Graphics,
  Vcl.Controls, Vcl.Forms, Vcl.Dialogs, Vcl.StdCtrls;

type
  TForm1 = class(TForm)
    Label1: TLabel;
    Button_Saludar: TButton;
    Button_Despedir: TButton;
    procedure Button_SaludarClick(Sender: TObject);
    procedure Button_DespedirClick(Sender: TObject);
  private
    { Private declarations }
  public
    { Public declarations }
  end;

var
  Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.Button_DespedirClick(Sender: TObject);
begin
  Label1.Caption := 'Adiós mundo.';
end;

procedure TForm1.Button_SaludarClick(Sender: TObject);
begin
     Label1.Caption := 'Hola mundo.';
end;

end.

Se hará tutoriales sobre encender y apagar un Led con Arduino y Delphi mediante puerto serie. ;)

Saludos.